Course description

Course abbreviation:	KMA/LA		Page:	1/3
Course name:	Linear Algebra			
Academic Year:	2023/2024	Printed:	01.06.2024	1 11:24

Department/Unit /	KMA / LA	Academic Year	2023/2024	
Title	Linear Algebra	Type of completion	Exam	
Accredited/Credits	Yes, 4 Cred.	Type of completion	Combined	
Number of hours	Lecture 3 [Hours/Week] Tutorial 1 [Hours/Week]			
Occ/max	Status A Status B Status C	Course credit prior to	YES	
Summer semester	0/- 0/-	Counted into average	YES	
Winter semester	0/- 0/-	Min. (B+C) students	1	
Timetable	Yes	Repeated registration	NO	
Language of instruction	Czech	Semester taught	Winter, Summer	
Optional course	Yes	Internship duration	0	
Evaluation scale	1 2 3 4	Ev. sc. – cred.	S N	
No. of hours of on-premise				
Auto acc. of credit	No			
Periodicity	K			
Substituted course	None			
Preclusive courses	KMA/LA-A and KMA/LAA			
Prerequisite courses	N/A			
Informally recommended courses N/A				
Courses depending on this Course N/A				

Course objectives:

The subject is dedicated to the study of basics of matrix algebra and linear algebra.

Requirements on student

Credit requirements: one test - 45 min., minimal result 50%

Student fulfill requirements for the credit after he /she consults his/her test with the lecturer and presents his/her index for signing the credit.

Exam: - test - 90 min., minimal result 50%

orals - two randomly chosen topics of the following ones:

- 1. polynomials, Horner scheme, polynomial factorization
- 2. determinant of a matrix, definition and basic properties
- 3. determinant expansion along a row or a column
- 4. vector space, linear dependence and independence
- 5. basis and dimension of a vector space, coordinates of a vector relative to a basis
- 6. rank of a matrix, Gaussian elimination, calculation of the rank using determinants
- 7. matrix inverse, Gauss-Jordan elimination
- 8. calculation of the matrix inverse using determinants
- 9. linear map (transformation), kernel and image and their dimensions
- 10. associated matrix of a linear map and its properties
- 11. inverse linear map, linear map composition and associated matrix
- 12. vector space isomorphism
- 13. homogeneous system of linear equations
- 14. nonhomogeneous system of linear equations
- 15. linear systems with an invertible matrix coefficient, Cramer's rule
- 16. eigenvalues and eigenvectors of a matrix
- 17. change of basis and change-of-basis matrix

- 18. change of a change-of-basis matrix by change of basis
- 19. similarity of matrices and its properties, Jordan normal form of a matrix
- 20. inner product and its properties, norm induced by the inner product
- 21. orthogonal and orthonormal basis for a space, the Gram-Schmidt process
- 22. orthogonal projection of a vector on a subspace, method of least squares
- 23. quadratic forms and real valued symmetric matrices
- 24. inertia of a quadratic form, Sylvester's law of inertia for quadratic forms

Content

- Week 1. Polynomials, Horner scheme, polynomial factorization
- Week 2. Vector space, linear dependence and independence, basis and dimension of a vector space, coordinates of a vector relative to a basis
- Week 3. Determinant of a matrix, definition and basic properties, determinant expansion along a row or a column
- Week 4. rank of a matrix, Gaussian elimination, calculation of the rank using determinants
- Week 5. matrix inverse, Gauss-Jordan elimination, calculation of the matrix inverse using determinants
- Week 6. linear map (transformation), kernel and image and their dimensions, associated matrix of a linear map and its properties
- Week 7. inverse linear map, linear map composition and associated matrix, vector space isomorphism, change of basis and change-of-basis matrix
- Week 8. systems of linear equations, homogeneous and non-homogeneous systems of equations, linear systems with an invertible matrix coefficient, Cramer's rule
- Week 9. eigenvalues and eigenvectors of a matrix, similarity of matrices and its properties, Jordan normal form of a matrix
- Week 10. inner product and its properties, norm induced by the inner product, orthogonal and orthonormal basis for a space
- Week 11. the Gram-Schmidt process, orthogonal projection of a vector on a subspace
- Week 12. method of least squares, quadratic forms and real valued symmetric matrices
- Week 13. inertia of a quadratic form, Sylvester's law of inertia for quadratic forms

Fields of study

Guarantors and lecturers

• Guarantors: Doc. Ing. Roman Čada, Ph.D. (100%)

Literature

• Basic: Tesková, Libuše. *Lineární algebra*. 1. vyd. Plzeň: Západočeská univerzita, 2001. ISBN 80-7082-797-

1.

• Basic: Tesková, Libuše. Sbírka příkladů z lineární algebry. 5. vyd. Plzeň: Západočeská univerzita, 2003.

ISBN 80-7043-263-2.

• Recommended: Havel, Václav; Holenda, Jiří. *Lineární algebra*. 1. vyd. Praha: SNTL, 1984.

• Recommended: Holenda, Jiří. *Lineární algebra*. 2. vyd. Plzeň: Západočeská univerzita, 1992. ISBN 80-7082-075-6.

Time requirements

All forms of study

Activities	Time requirements for activity [h]	
Contact hours	52	
Preparation for formative assessments (2-20)	10	
Preparation for an examination (30-60)	48	
Total:	110	

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Combined exam

Test

Skills demonstration during practicum

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

Knowledge of secondary school mathematics required.

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Interactive lecture

Collaborative instruction

learning outcomes

Knowledge - knowledge resulting from the course:

After completing the course the student will be able to

- find roots of several types of polynomials,
- use the concept of a vector and a matrix,
- calculate the determinant of a square matrix and to find its inverse,
- solve algebraic systems of linear equations,
- define and verify a vector space structure,
- work with the concept of a linear map,
- find eigenvalues and eigenvectors of a square matrix and to interpret them geometrically,
- classify quadric surfaces,
- approximate functions (data) by the method of least squares.

Course is included in study programmes: