Course description

Course abbreviation:	KME/PP2		Page:	1 / 4
Course name:	Mechanics of Materials 2			
Academic Year:	2023/2024 Prin	ted:	01.06.2024	4 08:12

Department/Unit /	KME / PP2	Academic Year	2023/2024
Title	Mechanics of Materials 2	Type of completion	Exam
Accredited/Credits	Yes, 5 Cred.	Type of completion	Combined
Number of hours	Lecture 3 [Hours/Week] Tutorial 2 [Hours/Week]		
Occ/max	Status A Status B Status C	Course credit prior to	YES
Summer semester	38 / - 0 / - 2 / -	Counted into average	YES
Winter semester	0/- 0/-	Min. (B+C) students	10
Timetable	Yes	Repeated registration	NO
Language of instruction	Czech, English	Semester taught	Summer semester
Optional course	Yes	Internship duration	0
Evaluation scale	1 2 3 4	Ev. sc. – cred.	S N
No. of hours of on-premise			
Auto acc. of credit	No		
Periodicity	K		
Substituted course	None		
Preclusive courses	N/A		
Prerequisite courses	N/A		
Informally recomm	nended courses KME/DPP or KME/PP1		
Courses depending	on this Course KME/SZMPT		

Course objectives:

The aim of the course is to acquaint students with following problems:

Fundamentals of mathematical theory of elasticity. Finite element method. Axially symmetrical problems (spinning disks, thick-walled cylindrical vessels) - stress and strain, technical applications. Slender curved and cranked beams and frames - stiffness and strength analysis. Structural stability, fundamentals. Fundamentals of stiffness and strength analysis of components from anisotropic materials. Fundamentals of linear and non-linear fracture mechanics. Material fatigue. Construction of computational models for the solution of problems using finite element method.

Requirements on student

Requirements for credit:

Elaboration and submission of semester work having relevant quality.

Requirements for exam:

Active knowledge of lectured subject matter and its application in the solution of specific problems.

Content

Lectures:

- 1. Three-dimensional state of stress: principal planes, principal stresses, generalized Hooke's Law.
- 2. Fundamentals of mathematical theory of elasticity: Derivation of differential equations of equilibrium. Geometrical relations. Physical relations. Boundary conditions.
- 3. Slender curved and cranked beams: statically determinate and indeterminate. Analysis of forces, stresses, dimensions finding and deflection calculation.
- 4. Closed planar frames: general and symmetrical frame, influence of cross-piece. Shells: basic terms, membrane conditions. State of stress of thin-walled rotational shell.
- 5. Spinning disks: theory of spinning disks disk of constant and variable thickness. Stress and strain analysis.
- 6. Thick-walled cylindrical vessels: Stress and strain analysis. Ring to shaft press-fitting.
- 7. Circular plates: Derivation of the basic equation of circular plates. Calculation of plate deformation and stresses.

Page: 2 / 4

- 8. Structural stability: critical force, analysis of Euler's theory, elastic and inelastic buckling analysis.
- 9. Membrane analogy 1: Stress function, torque, Stokes theorem.
- 10. Membrane analogy 2: Slim rectangle of torsion, quadratic torsion moment, loose twist of thin-walled open and closed profiles.
- 11. Fundamentals of fracture mechanics: linear fracture mechanics, Griffith concept, Irvin-Orowan concept of brittle fracture. Stress intensity factor, fracture toughness.
- 12. Material fatigue: fatigue fracture, cyclic loading, Wöhler's diagram. High-cycle fatigue, fatigue strength (fatigue notch factor, influence of size and surface quality, possibilities of increasing fatigue strength). Fatigue strength of real component.
- 13. Reserve.

Exercises:

- 1. Conditions for credit awarding. Review of subject matter from PP1.
- 2. Three-dimensional state of stress.
- 3. Theoretical basis for laboratory measurement.
- 4. Laboratory measurement.
- 5. Planar curved and cranked beams.
- 6. Closed frames. Rotational thin-walled shells.
- 7. Spinning disks. Semester work.
- 8. Thick-walled cylindrical vessels.
- 9. Ring to shaft press-fitting, releasing revolutions.
- 10. Circular plates.
- 11. Free twisting of open profiles.
- 12. Free twist of closed profiles.
- 13. Material fatigue. Credit awarding.

Fields of study

Guarantors and lecturers

• Guarantors: Prof. Ing. Vladislav Laš, CSc. (100%)

Lecturer: Ing. Vítězslav Adámek, Ph.D. (100%), Prof. Ing. Vladislav Laš, CSc. (100%)
Tutorial lecturer: Ing. Vítězslav Adámek, Ph.D. (100%), Ing. Martin Zajíček, Ph.D. (100%)

Literature

• Basic: Hájek, Emanuel; Reif, Pavel; Valenta, František. <i>Pružnost a pevnost I</i> . Praha: SNTL, 1988.
--

• Basic: Michalec, Jiří. *Pružnost a pevnost II*. Vyd. 2. Praha: Vydavatelství ČVUT, 2001. ISBN 80-01-02375-

3.

• Extending: Kolektiv. *Pružnost a pevnost II*. Praha : Vydavatelství ČVUT, 1980.

• Recommended: Gdoutos, E. E. Fracture mechanics : an introduction. Dordrecht : Kluwer, 1993. ISBN 0-7923-1932-

X.

• Recommended: Jenkins, C. H.; Khanna, Sanjeev K. Mechanics of materials: a modern integration of mechanics and

materials in structural design. Amsterdam: Elsevier Academic Press, 2005. ISBN 0-12-383852-5.

• **Recommended:** Hearn, E. J. Mechanics of materials 1: an introduction to the mechanics of elastic and plastic

deformation of solids and structural materials. 3rd ed. Oxford: Butterworth-Heinemann, 1997. ISBN

978-0-08-052399-6.

• Recommended: Hearn, E. J. Mechanics of Materials 2: The Mechanics of Elastic and Plastic Deformation of Solids

and Structural Materials. Third Edition. Oxford: Butterworth-Heinemann, 1997. ISBN 978-

0750632669.

• Recommended: Němec, Jaroslav; Dvořák, Jan; Höschl, Cyril. Pružnost a pevnost ve strojírenství. Praha: SNTL, 1989.

• Recommended: Kuba, František. *Teorie pružnosti a vybrané aplikace*. 2. vyd. Praha : SNTL, 1982.

• Recommended: Plánička, František. Základy lomové mechaniky při statickém zatížení. 1. vyd. Plzeň: ZČU, 1991.

Time requirements

All forms of study

Activities	Time requirements for activity [h]
Preparation for an examination (30-60)	50

Graduate study programme term	1 essay (40-50)	30
Contact hours		65
	Total:	145

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Combined exam

Skills - skills achieved by taking this course are verified by the following means:

Combined exam

Competences - competence achieved by taking this course are verified by the following means:

Seminar work

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

mít znalosti z oblasti diferenciálního a integrálního počtu

mít znalosti z oblasti matematické analýzy

mít znalosti z oblasti lineární algebry

mít znalosti z oblasti lineární pružnosti

mít znalosti o řešení napjatosti a deformace jednoduchých součástí namáhaných tahem, ohybem, krutem a jejich kombinacemi

Skills - students are expected to possess the following skills before the course commences to finish it successfully:

umět vypočítat základní typy integrálů

umět řešit diferenciální rovnice 1. řádu metodou separace proměnných

umět řešit soustavu lineárních algebraických rovnic

umět řešit úlohy lineární pružnosti

umět řešit úlohy napjatosti a deformace jednoduchých součástí namáhaných tahem, ohybem, krutem a jejich kombinacemi

Competences - students are expected to possess the following competences before the course commences to finish it successfully:

N/A

N/A

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Lecture

Skills - the following training methods are used to achieve the required skills:

Practicum

Laboratory work

Competences - the following training methods are used to achieve the required competences:

Individual study

Textual studies

learning outcomes

Knowledge - knowledge resulting from the course:

popsat a klasifikovat chování pružného tělesa

sestavit matice tuhosti vybraných prvků pro řešení úloh pomocí metody

sestavit na základě okrajových podmínek rovnice rovnováhy rotujících kotoučů, silnostěnných válcových nádob

Skills - skills resulting from the course:

řešit analyticky napětí a deformaci křivého nebo lomeného prutu a uzavřeného rámu

řešit analyticky stav napjatosti a deformace silnostěnných válcových nádob a rotujících kotoučů

řešit analyticky úlohy stability prutů

řešit numericky s využitím software rovinné úlohy pružnosti a pevnosti

Competences - competences resulting from the course:

N/A

N/A

Course is included in study programmes:

	71 0									
Study Programme	Type of	Form of	Branch	Stage S	t. plan v.	Year	Block	Status	R.year	R.
Computer Modelling in Mechanics	Bachelor	Full-time	Computer Modelling in Mechanics	1	2020	2023	Povinné předměty	A	2	LS
Computer Modelling in Mechanics	Bachelor	Full-time	Computer Modelling in Mechanics	1	2023	2023	Povinné předměty	A	2	LS
Computer Modelling in Technology	Bachelor	Full-time	Computations and Design		2018	2023	Povinné předměty	A	2	LS
Computer Modelling in Technology	Bachelor	Full-time	Computations and Design	. 1	2023	2023	Povinné předměty	A	2	LS
Computer Modelling in Technology	Bachelor	Full-time	Computer Modelling	1	2018	2023	Povinné předměty	A	2	LS
Computer Modelling in Technology	Bachelor	Full-time	Computer Modelling	1	2023	2023	Povinné předměty	A	2	LS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Combined	Design Engineering of Health and Cooperative Technology	1	2020	2023	Compulsory courses	A	1	LS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Full-time	Design Engineering of Health and Cooperative Technology	1	2020	2023	Compulsory courses	A	1	LS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Full-time	Design Engineering of Manufacturing Machines and Equipment	1	2020	2023	Compulsory courses	A	1	LS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Combined	Design Engineering of Manufacturing Machines and Equipment	1	2020	2023	Compulsory courses	A	1	LS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Full-time	Design Engineering of Vehicles and Handling Machinery	1	2020	2023	Compulsory courses	A	1	LS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Combined	Design Engineering of Vehicles and Handling Machinery	1	2020	2023	Compulsory courses	A	1	LS
Design of Power Machines and Equipment	Postgraduat e Master	Full-time	Design of Power Machine and Equipment	es 1	2020	2023	Compulsory courses	A	1	LS
Design of Power Machines and Equipment	Postgraduat e Master	Full-time	Nuclear Power Equipmen Design	t 1	2020	2023	Compulsory courses	A	1	LS
Design	Bachelor	Full-time	Design, specialization Industrial Design	1	4	2023	Povinně volitelné - specializační - FAV	В	3	LS