|
|
KMA/SNM2
Speciální numerické metody 2
Garanti: doc. Ing. Marek Brandner, Ph.D.
|
|
|
|
Předmět - literatura
KMA/SNM2
- IS/STAG
Základní
Leveque, Randall J.,
Finite volume methods for hyperbolic problems
, Cambridge : Cambridge University Press
2002
Hesthaven, Jan S.,
Numerical methods for conservation laws : from analysis to algorithms
2018
Brandner, M.; Egermaier, J.; Kopincová, H.,
Numerické metody pro řešení evolučních parciálních diferenciálních rovnic
2012
Rozšiřující
H. K. Versteeg, W. Malalasekera,
An introduction to Computational Fluid Dynamics. The Finite Volume Method
Chi-Wang Shu,
Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
Björn Sjögreen,
Lecture notes Shock capturing finite difference methods
P. Colella and E.G. Puckett,
Modern Numerical Methods for Fluid Flow
Doporučená
Míka, Stanislav; Přikryl, Petr,
Numerické metody řešení obyčejných diferenciálních rovnic : okrajové úlohy
, Plzeň : ZČU
1994
Míka, Stanislav; Přikryl, Petr,
Numerické metody řešení parciálních diferenciálních rovnic
, Plzeň : ZČU
1995
Míka, Stanislav; Přikryl, Petr,
Numerické metody řešení parciálních diferenciálních rovnic : evoluční rovnice
, Plzeň : Západočeská univerzita
1996
|
|
|
|
|
Další doporučená literatura
Základní učební texty o PDR HT - teorie:
- Constantine M. Dafermos: Hyperbolic conservation laws in continuum physics. Berlin : Springer, c 2000. (knihovna ZČU)
- Lars Hörmander: Lectures on nonlinear hyperbolic differential equations. New York : Springer-Verlag, 1997. (knihovna ZČU)
Rozšiřující učební texty o PDR HT - numerické metody:
- Andrei G. Kulikovskii, Nikolai V. Pogorelov, Andrey Yu. Semenov: Mathematical aspects of numerical solution of hyperbolic systems. Boca Raton : Chapman & Hall, c 2001. (knihovna ZČU)
- R. J. LeVeque: Computational Methods for Astrophysical Fluid Flow. Saas-Fee Course on Computational Astrophysics of 1997.
- J. O. Langseth, R. J. LeVeque : A Wave Propagation Method for Three-dimensional Hyperbolic Conservation Laws. Journal of Computational Physics, Vol. 165, No. 1, Nov 2000, pp. 126-166.
- Mark A. Christon, David I. Ketcheson, Allen C. Robinson: An Assessment of Semi-Discrete Central Schemes for Hyperbolic Conservation Laws. SANDIA REPORT SAND 2003-3238. Printed September 2003.
- William L. Oberkampf, Timothy G. Trucano: Verification and validation in computational fluid dynamics Progress in Aerospace Sciences, Volume 38, Issue 3, April 2002, Pages 209-272.
Z historie:
- S. K. Godunov: Reminiscences about Difference Schemes. Journal of Computational Physics, Vol. 153, No. 1, Jul 1999, pp. 6-25, s dopisem editorovi od B. van Leera An Introduction to the Article "Reminiscences about Difference Schemes" by S. K. Godunov.
- J. P. Boris, D. L. Book: Flux-Corrected Transport. Journal of Computational Physics, Vol. 135, No. 2, Aug 1997, pp. 172-186, s doprovodným textem S. T. Zalesaka Introduction to "Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works".
- A. Harten: High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Computational Physics, Vol. 135, No. 2, Aug 1997, pp. 260-278, s doprovodným textem P. Laxe Introduction to "High Resolution Schemes for Hyperbolic Conservation Laws".
- P. L. Roe: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of Computational Physics, Vol. 135, No. 2, Aug 1997, pp. 250-258, s doprovodným textem M. J. Bainese Introduction to "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes".
- B. van Leer: Towards the Ultimate Conservative Difference Scheme. Journal of Computational Physics, Vol. 135, No. 2, Aug 1997, pp. 229-248, s doprovodným textem Ch. Hirsche Introduction to "Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method".
- R. J. LeVeque: Simplified multi-dimensional flux limiter methods. Numerical Methods for Fluid Dynamics 4, ed. M. J. Baines and K. W. Morton, Oxford University Press, 1993, pp. 175-190.
- J. B. Goodman; R. J. LeVeque: On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws. Mathematics of Computation, Vol. 45, No. 171, Jul., 1985, pp. 15-21.
- E. Tadmor: Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes. Mathematics of Computation, Vol. 43, No. 168. (Oct., 1984), pp. 369-381.
- P. D. Lax: Nonlinear Partial Differential Equations and Computing. SIAM Review, Vol. 11, No. 1. (Jan., 1969), pp. 7-19.
- G. Zwas; S. Abarbanel: Third and Fourth Order Accurate Schemes for Hyperbolic Equations of Conservation Law Form. Mathematics of Computation, Vol. 25, No. 114. (Apr., 1971), pp. 229-236.
Články o PDR HT:
Pomocné materiály:
Nestlačitelné proudění:
- Hans Petter Langtangen, Kent-Andre Mardal and Ragnar Winther: Numerical methods for incompressible viscous flow. Advances in Water Resources, Volume 25, Issues 8-12, August-December 2002, Pages 1125-1146.
- P. Colella and E.G. Puckett: Modern Numerical Methods for Fluid Flow. U.C. Berkeley and U.C. Davis, 1994.
- John C. Strikwerda, Young S. Lee: The Accuracy of the Fractional Step Method. SINUM Vol. 37 Number 1 pp. 37-47. 1999.
- A. J. Chorin: On the Convergence of Discrete Approximations to the Navier-Stokes Equations. Mathematics of Computation, Vol. 23, No. 106. (Apr., 1969), pp. 341-353.
- G. Birkhoff: Numerical Fluid Dynamics. SIAM Review, Vol. 25, No. 1. (Jan., 1983), pp. 1-34.
Knihy, které jsou k dispozici v univerzitní knihovně (v daný moment mohou být zapůjčené):
- Adaptive multiscale schemes for conservation laws (Siegfried Müller).Berlin: Springer, c2003. ISSN 1439-7358
- Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves (Philippe G. LeFloch). Basel: Birkhäuser, c2002.
- Hyperbolic conservation laws in continuum physics (Constantine M. Dafermos) Berlin: Springer, c 2000.
- Numerical partial differential equations: conservation laws and elliptic equations (J.W. Thomas). New York: Springer, c1999.
- Numerical methods for conservation laws (Randall J. LeVeque). Basel: Birkhäuser, c1992.
- Finite volume methods for hyperbolic problems (Randall J. LeVeque). Cambridge: Cambridge University Press, 2002.
- Hyperbolic problems: theory, numerics, applications: eighth international conference in Magdeburg, February/March 2000 (edited by Heinrich Freistühler, Gerald Warnecke). Basel : Birkhäuser, c2001.
- Mathematical aspects of numerical solution of hyperbolic systems (Andrei G. Kulikovskii, Nikolai V. Pogorelov, Andrey Yu. Semenov). Boca Raton : Chapman & Hall, c 2001.
- Lectures on nonlinear hyperbolic differential equations (Lars Hörmander). New York: Springer-Verlag, 1997.
- Handbook of shock waves (editors Gabi Ben-Dor, Ozer Igra, Tov Elperin). San Diego: Academic Press, c2001.
- Handbook of shock waves (editors Gabi Ben-Dor, Ozer Igra, Tov Elperin). San Diego: Academic Press, c2001.
- Handbook of shock waves (editors Gabi Ben-Dor, Ozer Igra, Tov Elperin). San Diego: Academic Press, c2001.
- Advances in the theory of shock waves (Tai-Ping Liu [et al.]; Heinrich Freistühler, Anders Szepessy, editors). Boston : Birkhäuser, c2001.
- Waves and compressible flow (Hilary Ockendon, John R. Ockendon). New York : Springer, c2004.
- Mathematical and computational methods for compressible flow (M. Feistauer, J. Felcman, I. Straškraba). Oxford : Clarendon Press, 2003.
- Finite element methods for flow problems (Jean Donea, Antonio Huerta). Chichester: John Wiley & Sons, c2003.
- High-order methods for incompressible fluid flow ( M.O. Deville, P.F. Fischer, E.H. Mund). Cambridge : Cambridge University Press, 2002.
- Multiphase flow dynamics (Nikolay I. Kolev). Berlin : Springer, c2002.
- Multiphase flow dynamics 2 : thermal and mechanical interactions (Nikolay I. Kolev). Berlin: Springer, c2002.
- Compressible fluid flow (Patrick H. Oosthuizen, William E. Carscallen). New York: McGraw-Hill Companies, c1997.
- Numerical methods for flow calculation in turbomachines: lecture series 1994-06, May 16-20, 1994; C.H. Sieverding). Rhode Saint Genese : Karman Institute for Fluid Dynamics, 1994.
- High resolution (upwind and TVD) methods for the compressible flow equations: selected special topics from previous VKI lecture series. Rhode Saint Genese: Karman Institute for Fluid Dynamics, 1994.
- Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (J.A. Sethian). Cambridge: Cambridge University Press, 1999.
- Principles of computational fluid dynamics (Pieter Wesseling). Berlin: Springer, c 2001.
- Riemann Solvers and Numerical Methods for Fluid Dynamics: a practical introduction (Eleuterio F. Toro). Berlin: Springer, 1999.
- Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves (Philippe G. LeFloch). Basel: Birkhäuser, c2002.
- Computational methods for fluid dynamics (Joel H. Ferziger, Milovan Perić). Berlin: Springer, c2002.
Poslední změna:
12.03.2009
|
|
| |